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I. INTRODUCTION

' A. THE COMMUNICATION SYSTEM

: 1. Gencral
! A general communication system (Fig. 1) contains an inform- :
L ation source, an encoder, a channel, a decoder, and a destination. The

: information source selects a desired message from a set of possible
messages. The source encoder, when one is used, compresses the
data by removing inherent redundance in the source output so as to
make each possible output equally likely. The channel encoder re- 1

introduces redundancy into the data to improve the reliability of trans- 1
|

mission over the channel,

The communication channel is the medium of conveyance of
information from the source location to the destination location. The
channel decoder uses the redundance introduced by the channel encoder
to correct errors introduced during transmission.

If a discrete memoryless source whose output is equally |
probable binary digits is assumed, the source encoder and source de- <
coder are no longer necessary and the resulting communication system
is shown iIn Figure 2. In actual practice this is the most common arrange- ‘ 7 ‘
ment for the communication system even if the information source does

not produce equally probable binary digits. |




If a communication chanrel is noisy, it is not possible, in
general, to reconstruct with certainty at the channel decoeder, the out-
pu: of the information source. Shannon [1] , however, did show that
by proper encoding the probability of making a decoding error can be
made arbitrarily small if the rate of data transmitted across the communi-
cation channel does not exceed a maximum vzne known as the channel
capacity C,

The capacity of a channel, in general, is influenced by a
number of factors. The number of channel inputs and outputs, and the
set of all possible transition probubilities from the inputs to the outputs,

all affect the channel capacity.

2. Noise

The effect of channel nolse Is to introduce the possibility
that the output of the channel may differ from the input to the channel.
The particular way in which the noise affects the channel's input is
determined by the tvpe of channel and the type of channel noise encoun-
tered. Memoryless channels, which are often used as theoretical models,
assume that all digits transmittad over the channel are affected independ-~
ently by channel ncise. Unfortunately, thic memocryless property is
rarely found in real channels, an important exception being certaln deep
space channels,

Errors on most real channels tend to occur in groups or

bursts. These real channels are thus channels with memory because the

probablility of the charnel changlng a transmitted digit is dependent on

JSRE W S




whether the channel changed the previously transmitted digit. The cal-
culation of the probability of a given error sequence occurring is thus

the product of a serics of conditional probabilities.

R, NOISY CHANNEL ENCODING AND DECODING

If noise were not present in the channel, no encoding of the
source output would be needed to get the transmitted message to its
destination. The presence of noise, however, requires sufficient
redundancy in the encoded message so that the original message can
be recovered at the decoder.

For binary encoding this required redundancy can be accomplished
by using block codes and partitioning the input sequences into blocks
of K bits. The encoder outputs blocks of a longer length (N bits) forming
a (N,K) block code. The encoder thus maps the set of 2K possible K
bit sequences (messages) into a set of N bit sequences called code-
words. In the channel, noise may be present and the input tc the channel
decoder (Y) may differ from the output of the channel encoder (X). The
decoder performs the mapping of all possible received sequences b.ack
into the messages most likely to have been transmitted. Sirce the
decoder must make a decision as to which message was transmitted for
a given received sequence, there is a certain probability of making a
decoding enor. The probability of the decoder making an error is largely
dependent on the mathematical properties of the type of code used, the

type of decoding used, and the number and type of channel errors

encountered.

Fi




11. CHANNEL MODELS

THE BINARY SYMMETRIC CHANNEL

The simplest model, and the one most commonly used to represent
error sequences, is the binary symmetric channel. The bSC in shown in
Figure 3. The transition probabilitics are assumed to be constant and
are not dependant on the previous usaes of the channel. The maximum rate
at which information can be reliably transmitied across the channel is
called the channels capacity C. Shannon [1] and others have shown
that the capacity of the binary symmetric channel C = 1-H(p), where the
p Is the crossover or error probability of the BSC as shown in Figure 3.
H(p) ts called the entropy function and is defined as H{p) = -p logzp—(l—p)
lngp (1-p).

In informaticn theory, the binary symmetric channel is the most
often used model of a communication channel. This iaealized model has
been shown to accurately represent some deep space communication links
but it is a poor model for most real communication channels encountered.
Frrors on real channels cansed by lightning interference from another trans-
mitter, fading propagation paths, and many other natural and man-
made phenomena tend to occur in groups or bursts,

Bursty ciiannels are called channels with memory because the proba-
bility of making an error on a particular digit of an information sequence

is greatly increased if an enor is made on the preceding digit. The memory

19
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characteristic of most real channels is *he reason the BSC fails as au

accurate model.

B. THE GILBERT MODEL

1. Introduction and Description

A simple model for a channel with memory was proposed by
E. N. Gilbert {5} . The pictorial representation of the Gilbert model
is shown in Figure 4. This modec! of a burst-noise binary channel uses a
Markov chain with two states called G and B. In state G no transmission
errors are made and in state B the probability of making an error is h.
Tﬁe parameters h, P, and p are assumed constant. The probability of
making an error on any digit of a binary sequence is dependent on the
state of the channel when that digit is transmitted. The fraction of time
spent in the bursty stae B,is p/P+p) and the fraction of time spent in the
good state ls PAP+p).

2. The 3 State Partttioned Gilbert Model

a. Definition
In the two state Gilbert Model when in the bursty state
B an error may or may not occur. If the bursty state B Is partitioned into
an error free state By and an error state B, the resulting channel model

Is as shown picterially in Figure 6. The model now consists of three

PP P

states: G, BO’ and Bl’ and errors occur when and only when the channel

is in state Bl’




-

———— —.

With this partitioned model, the probability of a digit

of a transmitted blnary sequence being in errur is dependent on the state
of the channel and the transition probability from that state to the By h

state. The state of the channel is determined by the previcusly trans-

mitted digit. If the previous digit was in error, the channel is in state Bl
and the probabllity of a digit error Pa(g)=4s(s-p) . If the previous digit
was not recelved in error, the channel could be in either state B or state
Gand Pn(e)l= Pal(Bo/wvers,) A {I-P) + Pa (G//vor 8.,) P wweae Pa(8.)
i{s the probability of the channel being in state By and Pa(G) is the proba-
bility of the channel being in state G. In a similar manner it is possible
to calculate the probability of occurrence of a complete binary error
sequence, using this model. The probability of a digit error is the calcul-
ation of the probability of the state B;. To calculate the probability cf an
error sequence, the a priori state probabilities must be calculated for the
given model parameters P, p, and h, ' 1

b. Calculation of a priori State Probabilities

Since the probablility of occupancy of a state at any

digit is only determined by the previcus digit and the transition probabili-
ties, the state probabilities at the (k+1) ST digit can be expressed by the

following equations:

bl 1 L
h— e

e, i e e e

Tears)=(1-p) TT6(A) + P (7T8.(R)+TT8: (A)
T Bo(A+1) = P(i-h) TTG (R) + (-P)(1-h) ( TT8o(A) + TT8: (A)
Te(AN=hp Tre(h)+ (1I-F)h (IT8.(8)+ Tai(4))

12



As k+oc , the probabilities 77 G(k), 7780(k), and

7TBl(k) approach equilibrium valves 777G, 77B,,and 77 B, . Thus,

the equations reduce to:

Tle =(1-p) 7TTe  + P (TT8o+ TTs.)
TTs0=p-) s + (1-B){1-p) (TT8.+ 775, )
Tei= hp 776 + (1-P) h (TT80+7T8))

Since (77 80+ 7T8,) = (/- 776)  it's substitution
yields

P ©(/-5) P
TTe = Prp 778, = Prr 7, = p/ip

An alternate method of solution is to observe in the
original Gilbert model that the fraction of time spent in state G is P/(P+p)
and the fraction of time spent in the burst state B is p/(P+p). The fraction
of time spent in state Bj fs the burst state error propability h times the
fraction of time in the burst state and the time spent in state B,ls thus
(1-h) p/(P+p).

c. Calculation of Error Sequence Probability

Given any binary sequence, the probability that that

sequence is the error sequence of a Cilbert channel can be calculated as

follows:

(1) Initialize by choosing values 77 G(0),
T By(0), 77 B1(0). (If the initial state of
the channel is unknown or not specified, a
sensible cholce {s to initialize to the state
equilibrium distributions: TTe(o)= 775 » €tc.)

13
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(2)  If the k th digit is in error, assign
TTBs (AR =T (A)= 0.0

TTe (A= h oiTa(R-) + (=P h (T80 (A-1)+TT8/(A-1)

Assign the probability of the sequence
after the k th digit PSEQ(k) = 77 By (k)

(3)  If the k th digit is not in error, assign
77 Bi(k) = 0

T Bo(R)= p (1-1) TT6 (404 (1-P)1-h) (TTo. (A-) + TTs, ( A-1)
TTe(R)=(1-P) TTe(A-1) + P (TTso(A-l)+Wa.(h-l)) '

Asslgn the sequence probability after
the k th digit PSEQ(k) = 77 By(k) + 77 G(k)

d. Modeling of Real Channels

In recent years many channel models have been proposcd
to characterize the performance of real communications channels. Gilbert
[_SJ originally proposed the simple two state model for a channei with
memory and had limited success in choosing the parameters of his model
to produce statistics similar to given finite length error sequences. Using
this model it is impossible to reconstruct the sequence of states from a
glven error sequence because of the many possible sequences of states-
that produce the same given error sequence.

Fritchman [7] extended the model of Gilbert by
studying the general case of finite state models with k error free states

and N-K error states. Many more complex models have been developed in

ot W e

attempts to accurately represent the performance of real channels. The
comparison of the accuracy of a developed model to & given real channel 3

is usually done by performing a statistical analysis on a Zinite data

14




sequence from the channel and comparing the results to the statistics of
data produced using the constructed models. Increasing the model's
complexity incrcases the number of possible ways the model can generate

a particular sequence and thus reduces the chance of obtaining accurate

statistical data about the model.




IIT, CODING ON A NOISY CHANNEL

A, BLOCK CODES

1. General

Block codes are usually specified as (N,K) codes, where N

is the number of codeword digits (block length) and K is the number of
Information digits in a codeword. The rate, R, of the code is the ratio of
the number of in{crmation digits in a codeword to the total numboer of
digits in the codeword (R= K/N). The hamming distance beiween two code-
words {s the number of positions in which the digits of the two codewords
differ. The hamming weight of a codeword is its number of non-zero com-
ponents., The distance between two binary codewords is the hamming
welight of their difference. The distance between a transmitted codeword
X . and the received codeword y denoted d(x. , Z)' is the number of
transmission errors occurring in the channel.

2. Error Correction Bounds for (N ,K) Block Codes

a. Random Error Correction
Let d min denote the minimum distance of a (N,K)
block code (the least hamming distance between codewords). At least
two codewords differ in only d min of their N positions. It has been
showr. by Peterson [2] and others that thec~ block codes with mini-
mum distance < min can in general detect ol min - 1 errors or correct

(d min-1)/2 errors. It is also possible to decode in such a way as to

16
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simultaneously correct t or fewer errors and detect m or fewer errors
if and only if d min >2t+m. If a code Is used for error correction
only and has a minimum distance of ¢l min, ol min > 2t, the code is
capable of correcting t or fewer random errors.

Two codes -an have the same miminum distance and one
of the codes have much better error correcting ability because of its capa-
bility to corre::t more error patterns of greater weilght than that guaranteed
by {ts minimum distance. Minimum distance alone is therefore not a com-

plete measure of the goodness of a code.

Gilbert [8] proved thatforanyN >0 and d > 0

such that —%,L-' < -ﬁ' , there exists a code of length N and minimum distance

A min = d with arate R = l—H(O('/N) {where H( ) is the binary entropy
function). This bound, known as the Gilbert Bound, is often used as a
measure of goodness for a code. Sincet = -Q%i < -% errors can be cor-
rected by a code with a minimum distance d, the Gilbert bound may be
expressed as

H(EE )2 1-r

b, Burst Error Correction

An error sequence of length N is said to contaln a burst
of length t if all non-zero digits are confined to a span of t consecutive
positions. Since a burst of length t is also one of the random error
patterns of weight t, it is clear that a code capable of correcting any

pattern of t or fewer errors s also capable of correcting all bursts of

17
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length * or less. Gallager [3] has shown that a code of length N

and ratec R can correct all bursts of length t or less only if

~ < +(1-R)

This relation {s known as the Gallager bound and it can be shown that as
the block length N approaches infinity, codes exist which meet the
Gallager bound.
c. Comparison of Burst Correction and Random

Error Correction

A comparison of burst and random error correcting capa-
bilities of codes can be obtained by comparing the Gilbert and Gallager
bcunds as shown in Figure 6. Also sketched is the asymptotic form of an
upper bound on random error correcting capability due to Plctkin [9] .
The bounds show that as N approached infinity, the length of correctible

bursts is twice the welight ¢l correctible random error patterns.

B. LINEAR CODES
1. General
The alphabet of two symbols, 0 and 1, under modulo-2
addition and multiplication is called the Galois field of two elements (or
binary fieid) and ls usually denoted GF(2). It can be shown that for any
integer ¢ = p™ , where p !s prime and n 2 1, a Galois field of q elements
exists. This fleld is usually denoted GF(q). The set of all binary N-tuples

is a vector space over GF{(2) of dimension N under the operation of modulo-

2 addition. A binary code is called linear if and only if it is a subspace




of the space of all N-tuples. Any linear combination of codewords of a
linear code Is thus also a codeword of the linear code. Since any code-
word added to itself Is a codeword, the N dimensiona.l null vector {s always
a codeword of any linear code.

2. Gernerator Matrix G and Parity Check Mattix H

Any set of basis vectors for a linear codeword set V can be
considered as rows of a matrix G called the generator matrix. All code-
words are linear combinations of the rows of G. If the dimension of V is
K, the number of rows of G is K and G if a (KxN) matrix. Every codeword

X In the codeword set V can be generated by multiplying the matrix G by

the vector u where u is one of the set of 2K K-tuples, called messages
(x = uG). !

The parity check matrix H for a linear code is a matrix such '
that for any x, xH™ = 01f and only if x is in V. H is thus a ({(N~K)x N)
matrix of rank N-K.

A codeword set V is in cancnic systematic forin when the first
K digits of a codeword x is the information vector u used to generate x.
The codeword x may be expressed by x = (al, a2, ..... 8K C1vs Couenne

cy-k). The G and H matrices can now be expressed by

6=[I«:P] H=[P"i Tww]

(IK denotes a identity matrix of order K), it can be shown that any linear

code can be put in canonic systematic form after a proper permutation of its

codeword poslitions.

x




3. Syndrom<c Decoding

-

The syndrome S of a linear code may be defined by -S-=XH
where y 15 the reccived sequence at the channel deccder. The received
sequence y may be expressed as y = x + ¢ where x Is the codeword trans-
mitted and ¢ is the error sequence genecrated by additive noise in the
channel. § = y H=x Hr+g}{=_e_l-{ .

(since x H= 0 for any codeword ::.)
r

Since S=eH and e is a N component vector and HT is a N x (N=K)
matrix S Is a vector with N-K components.

In general for any binary (N-K) linear code there are Z(N"K)

syndromes and each of these syndromes has 2K possible error sequences

for which the equation S = ¢ H' s satisfied, If the decoder is constructed

so that upon receiving an input Yo it calculates §, then chooses the g*
whici: is the most likely of the 2K possible error sequences of S, maximum
likelihood decoding can be implemented by adding the e*o y to yield x*,
the codeword most likely to have been transmitted.

If S = 0, then the received sequence y is a codaword and if
S # 0, the received sequence is not a codeword. S = 0 does not guarantee
that no errors were made in transmission since x + ¢ could sum to a code-
word but § # 0 does guarantee that some errors did occur.

Cne alternative decoding method to maximum likelithood de~
coding is to calculate the syndrome S and if S = 0, accept the codeword

as received and if S # 0, request a retransmission of the codeword. The

20
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main disadvantages tothis system are the additional reliakle communica-
tion systems needsd from the user back to the source and if a large number
of errors occur , the data rate is greatly reduced and a large buffer may be

needed to maintain symbol synchronization.

C. CYCLIC CODES
1, Introduction
a. Definition
As defined by C.allager [3] , a cyclic code over GF(q)

{s a linear code with the special property that any cyclic shift of a code-

word is another codeword. That is, if (a), A5, A3 cenns aN) is a code-~
word, then (ay, @), @, «veu aN-1) is also a codeword.
b. Generation of a Cyclic Linear Code
If a codeword x = (xy-1, Rpjaps ooe e X Xg) it may be

represented by a polynomial over GF(q) (a Galois field of q elements).

N LY

x(D) = x,_., D + X,o.p D + - X, D+ Xo o

If x(D) is a codeword in a cyclic code (the coefficients form the letters of
a codeword) then the remainder of D x(D) quulo DN -1 is also a codeword.
Let g{D) be the lowest degree monic polynomial of degree m(m = N-K),
which is a codeword. It has been shown that for any polynomial a(D) in
GF(q) with degree at most K-1, a(D) g(D) i{s a codeword. The polynomial
g(D) is called the ge:erator polynomial of the cyclic code and all code-
words contain g(D) as a factor. The set of ccdewords is the set of linear

combinations of g(D) and its first K-1 cyclic shifts. Any (N-K) degree

21




monic polynomial over GF(g) that divides DN -1 can gencrate a cyclic
code with K information digits and block length N,

The check polynomial h{D) for » (N,X) linear cyclic
code {c defined so that g(D) h() = pN and h(D) is of degree K. With
the check polynomial h(D) so defined, it may be shown that, as for the
parity check matrix for any linear code, x b T = 0 if and only if x is a
codeword ., |

2, Maximal Length Codes

a. Definition
A linear maximal sequence is a binary sequence gen-
erated by a linear shift-register generator which has the longest possible
period for this generation mmethod. The longest period, L = 2K-1, where
K 1s the number of stages in the shift-register generator. A linear code
whose codewords are maximal length binary sequences is called a maximal
length code.
b. Generation
A linear shift-register generator consists of a basic
shift register and modulo~-two adders. The geneiwtor outputs a binary
sequence that is based on its initial input and the feedback connections
to the modulo~two adders. The binary sequence output of the register is : 4
of maximal length when the feedback connections are made in accordance
with a primitive polynomial as is defined by Peterson [2] . The con-
nections also correspond to the parity check polynomial h(D) described in

the previous section.
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As descrlbed by Gallager [3] , given h(D), a minimum
polynomial of degree m of a primitive element in any representation of
GF(p™ ), a maximal iencth code of block length N = p™ -1 can be generated
by an m-stage shift-register encoder circuit as shown in Figure 6. Or.1e
codeword of the code corresponds to the generator polynomial g{D) and the
remaining codewords are generated by N-1 cyclic shifts of g(D),

A (7,3) maximal length code may be generated using a
feedback shift-register whose connections correspond to a primitive poly-
nomial of degree 3. The third degree primitive polynomial listed in
Peterson [ZJ , i5 1 3 {octal representation) or 001011 (binary representa-
tion). This corresponds to h(D) = 1 + D + D3 and the connections to a fend-
back shift-register to generate the (7,3) maximal length code are shown in
Figure 7.

Maximal length codes are useful because they are easy
to generate and have a large minimum distance for their block length. The
(7,3) maximal length code has a block length of 7, a rate of 3/7 and a
minimum distance of 4, This code is thus able to correct all sinyle errors
and many double erros vatterns.,

3. BCH Codes
a, General

The Bose, Chandhari, and Hocquenghen (BCH) codes
were first discovered in 1959. These codes are cyclic codes which have
powerful error-correcting properties and for which relatively simpledecoding

algorithms exist. The BCE codes have become the most important and
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widely used linear cyclic codes. Most examples of ¥TH codes are binary,
but the alphabet can ke elements from any arbitrary Galois field GF(q).
For these BCH codes it is possible to specify a block

length N (usually N = 2™ -1) and a minimum distance d(d < N} and choose

a generator matrix to produce a code with the specified length and distance.

For lengths up to 1023, the BCH codes have rates which meet or exceed
the Gilbert bound, although as N approaches infinity they fail to do so.

b. Generation

Suppose a block length of 15 (m = 4) and a minimum

distance of 5 was desired (ability to correct tw . errors). For « a primitive
element of GF(24 ), the generator polynomial for this desired code can be
calculated by taking the product of the minimum polynomials for d-1
consecutive powers of o« . (Refer tc Gallager f3] page 233 tor a brief
list of minimal poiynomials.) Calculation of G(D) by this method yields

G(D)= (D*+0+1) (D+ D'+ D'+0+1)= D% D+ D% DY+ 1 .

Since the generator polynomial is of degree N-K, N-K=8, K=7, and the
code is a (15,7) BCL code. A possible generator matrix for this code is a
matrix whose first row is the code vector corresnonding to the generator
polynomial G(D). Since G(D)= D8+ D7 + D6 + D4 + 1, the first row of
the generator matrix could be 000 000 111 010 001. The remaining K-1

rows of the generator matrix could be the K-1 or 7 cyclic shifts of the first

TOVY .,
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4, Interleaving

a. General

A simple and often used technique to combat burst
errors on a channel is the use of an interleaver. The principle is to
separate successive digits within a codeword by a certain time interval
so that burst errors on the channel will not appear successively in the
codeword. If the interleaving achieved a separation of B bits, a burst
of B errors would cause one error to appear in each codeword, This
technique distrlbutes the channel burst errors in a pseudo-random manner
and gives the decoder an opportunity to correct an otherwise uncorrect-
able bursf error pattern, at the possible expense of making more decoding
errors. The two most common interleavers are the block interleaver and
the periodic (or convolutional) interleaver.

b. Block Interleavers

Block interleavers are the most common type of inter-
leavers and the Interleaving is usually accomplished by storing encoded
codewords bits In the rows of a BxN matrix and then reading out these bits
by columns prior to their transmission across the channel. This produces
a separation of B bits between adjacent bits of the codeword when it transics
the channel. The longer the degree of interleaving, the more storage
required and the longer time delay from the encoding of a word until it is

actually transmitted across the channel. The received bits are deinter-

leaved prior to their decoding.
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c. Periodic Interleaver

A periodic (or convolutional) BXN interleaver achieves
interleaving by arranging the codeword symbols in blocks of N and delay-
ingthe { th symbol in eacl: block by (i-1) B time units. The delay is
accomplished using a (i-1) gl stage shift-register clocked once every N
symbol times, where Bl = B/N,

At the recelver, symbols are reblocked in groups of N by
the deinterleaver and the { th symbol in each block is now delayed by
(N-i) B times units using a (N-1) Bl state shift-register.

The result of this interleaving and deinterleaving is to
delay all symbols by (N-1) B! time units and separate adjacent codeword

symbols by B time units., A single channel burst of B or fewer time units

will affect only one of the N deinterleaver output streams at a time.




IV. DECODING

A. GENERAL

1. The Decoding Problem

The basic problem of the block code decoder is to chose the

correct codeword transmitted from the sect of ZK possible codevrord N-
tuples which could have been transmitted given that a certain N-tuple (y)
was received, There are a3 number of possible ways the decoder could
make the required cholce. Two decoding methods are maximum likeli~
hood decoding and minimum distance decoding.

2. Maximum Likelithood Decoding

Let

X = {x,, Xayg oo xJ
denote a transmitted codeword and

Y= (Voo var e0e )
the N-tuple received by the decoder. Given a curtain Y m has been
received the maximum likelihood decoder chooses a x ,;;,' one of the set of
ZK possible codewords such that the probability Pa (ﬁ,, /g;;,) is
maximized. To accomplish the proper choice of x 45 the decoder must
calculate the probability of Y for each of the 2K possible codewords
which could have been tranémltted. Since each of these ZK I'Jrobabllity

calculations takes time, maximum likelihood decoding Is not really prac-

tical for long codes.
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The minimum-error probability decoding rule is the

decoding rule which minimizes the probability of decoding erraor for a given
message ensemble of codewords. For discrete memoryless channels the
decoder minimizes the probability of error by choosing a x ,,. so that the
probability of that x ,. conditioned on the received sequence (X) is largest.
If all of the 2K codewords are equally likely (which is usually assumed),

it can be shown that maximum likelihood decoding is equivalent to minimum-
error probability decoding,

3. Minimum Distance Decoding

Given any two biniry N-tuples the distance between them is
defined as the number of positions in which the two sequences differ. The
distance between a transmitted codeword x and a received sequence y

is therefore

d(x, y) = Z Y (xis ¥y )

PAY

where

§ =1 1f x # y otherwise § = 0.
As previously stated, the minimuin distance 15’ a rough measure of a code's
error correcting and detecting ability. A minimum distance of d] guarantees
the ability to correct at least éé‘_i errors, {x,y) is the number
of errors that have occurred in the channel. For memoryless channels

pr (yx) = A% B (g VW)

where Pr denotes the probability and B is the probability of a digit

being in error. Since B {s always assumed less then 1/2 the Pr (y/x)
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Increases as d (y,x) decreases. The decoder which minimizes d{y,x)
always maximizes P(y/x). On the binary symmetric channel with equally
likely codewords, the "minimum distance" decoder is equivalent to a

maximum likelihood decoder.

B. DECODING ON CHANNELS WITH MEMORY
By General

The concept of maximum likelihood decoding applies 1o
channels with memory, as well as to memoryless channcls, Maximum
likelihood decoding, however, cannot be implemented on a channel with
memory by using a minimum distance decoding rule. 7The usual decoding
strategy for channels with memory Is to map each syndrome into the error
pattern which is the shortest burst that could cause that syndrome,

Decoders which are optimum in this sense are known [3] , but these

decoders are optimum in the sense that they have the lowest probability |
of error only {f a short burst is always more iikely than a longer burst,

In order to obtain some quantitative evaluation of maximum
likelihood burst decoding a simulation of two codes using a Gilbert

channel model was performed as is oescribed in the following sections. {

2. (7,3 Maximal Length Code

A (7,3) maximal length code was constructed (as described in
Chapter 111) and a channel was modeled using the partitioned 3 state

Gi'bert model,.

29




A (7,3) maximal length code was chosen because it has a
short block length, relatively large minimum distance (4), and is easily
constructed. The code has 16 syndromes and 8 error sequcnces are solu-
tions to S = eH T for each syndrome. Since the minimum distance of 4
gave a capablility to correct all single errors, all single error sequences
and the zero error sequence were assumed to be the most likely error
sequence for their corresponding syndrome, since no two of these correct~
able error sequences wae in the same syndrome. Seven of the remaining
eight syndromes contained 3 weight two error sequences. The remaining
syndrome contalned 7 weightthree error sequences and the burst of length seven,

The parameters P, p, and h of the partitioned 3 state Gilbert
model were varied and error sequence probabilities were calculated for
the zero error sequence, the seven single cnror scquences, and the 64
error sequences of the remaining 8 syndromes, using the method described
in Chapter 11,

A maximum likelihood decoding error pi - ibility, P(E), was
calculated by summing the probabilities of the most likely error sequence
in each of the 16 syndromes and subtracting this cumulative sum from one.
The results of these error sequence probability and maximum likelihood
decoding calculations are as follows:

(a)  The most likely error sequence for each syndrome q

was the burst pattern of minimum length. Error sequences

of the same weight were not i1 general equally likely using

the Gilbert mode. but were dependent on the parameters P,

p, and h.
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(b)  The probability of decoding error, P(E), .lncreased
as the channel model was made more noisy by increasing
p or h or by decreasing P (see Fig. 9, 10, and 11).

(c) The prlobabillty of error is influenced more by

P, the probability of transition from the burst state,

than by the parameters p or h of the Gilbert model (see
Fig. 9, 10, and 11).

(d) Finally, a binary symmetric channel was modeled
by letting P = 1-p and h = 1. With this model, all
error scquences of equal weight were equally likely, and
the most likely sequences were the ones cf least weight,
The probability of decoding error, P(E), increased as the

model was made more noisy.

Since this code has a very limited number of syndromes, its
ability to correct long bursts was limited. This suggested a code of longer
length with greater burst correction capability should be {nvestigated.

3. {(15,7) BCH Code

A (15,7) BCH code was constructed as described in Chapter
1. This code has 2" syndromes and 2’ error s2quences are solutions
toS = _e_-H.r for each syndrome. Since it was impractical to calculate
all pussible error sequence probabilities as was done for the (7,3) maxi-
mal length code, another method had to be vsed.

An error sequence of {nterest was .-hosen. All error sequences

which have the samc syndrome as the chosen error sequence, were
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generated by the addition (modulo 2) of this error sequence to every code-

word of this (15,7) BCH code. The probability o each of these sequences

was then calculated (as described in Chapter III) using the partitioned

three state Gllbert model. The results of these calculations were as

follows:

(a)  Error sequences of equal weight are not in general
equally likely and the selection of the Gilbert model
parameters determines which one of the equal weight
patterns is the most likely.

(b) The most likely error sequence for a particular
syndrome is not always the error sequance of least
weight or the burst error sequence of shortest length.
Tigure 12 shows the probability of three different error
sequences as h, the burst state error probability, is
varfed. For values of h between 1.0 and .75, a solid
hurst of length 6 Is the most likely sequence. For values
of h between .75 and .39, a burst of length S is the
most likely sequence. When h is less than .39, the
minimum welght sequence ¢ weight three is the most

likely.

32




V. CONCLUSIONS

Although many better and much more complicated channel models
exist, a bursty channel can be modeled using the simple partitioned 3
state Gilbert model. Error sequence probabilities can be easily calculated
using this model. These calculations show for some codes error sequences
of the same welight are not equally likely and burst error sequences of
smaller length may not be as likely as longer burst error sequences.

The optimum burst decoder, as proposed by Gallager [3]
which always chooses the burst error of smallest length as the most likely
error sequence, is not optimum in the sense of having an error probability
as low as a maximum likelihood decoder. A minimum wéight decoder like-~
wise is also not a maximum likelihood decoder for this model. This
suggests that.a decoder having the minimum probability of error for the
bursty channel cannot be easily constructed,

If it is possible to model a real channel using a finite number of
states involving a Markov chain, it Is then possible to calculate error
sequence probabilities and choose the type of dec.oder required to give the

lowest probability of decoding error.

PRI

A common technique for combatting burst zrrors has been to use an

interleaver to scatter burst channel errors in a pseudo-random manner.

e s SRR R

The rationale behind this technique is if the degree of interleaving is large

enough, the burst errors will be sufficiently scattercd so that the channel
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can be treated as memoryless. Since the errors now seem to occur in a

random manner, a code with good random correcting ability is sometimes

used in conjunction with a minimum distance decoder. The channel burst

errors are not purely random but are distributed systematically in accord-~

ance with the interleaver uced. Purely random error correction does not

use information contained between interleaved codewords about how errors

are distributed, Interleaving does enable a code to correct otherwise

uncorrectable long burst errors. 1his suggests that a better burst error

correction technique would be to use an interleaver but also use a decoding

rule which would use the information contained between interleaved code-

words to ald in burst error correction.
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Figure 1. Block Diagram of a Ger.eral Communication System.,
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Figure 2. Block Diagram of a General Communication System

with a Discrete Memoryless Source Assumed.
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Figure 3. The Binary Symmetric Channel

Figure 4. The Gilbert Meodel.

(1-h)p o

Figure 5. The Partitioned Three State Cilbert Model.
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Asymptotic Error Correction Bounds.
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(7,3) Maximal Length Code.
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PSEQ (Error Sequence Prcbability)

O - Burst of Length 6
T+ (Q - Burst of Length S
J O ~ Random Error of Weight 3
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Figure 12. PSEQ vs h (p = .10, P = .50) -
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